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A Unified Approach to the Design, Measurement,
and Tuning of Coupled-Resonator Filters

John B. Ness

Abstract—The concept of coupling coefficients has been a
very useful one in the design of small-to-moderate bandwidth
microwave filters. It is shown in this paper that the group delay
of the input reflection coefficients of sequentially tuned resonators
contains all the information necessary to design and tune filters,
and that the group-delay value at the center frequency of the filter
can be written quite simply in terms of the low-pass prototype
values, theLC elements of a bandpass structure, and the coupling
coefficients of the inverter coupled filter. This provides an easy
method to measure the key elements of a filter, which is confirmed
by results presented in this paper. It is also suggested that
since the group delay of the reflection coefficient (i.e., the time
taken for energy to get in and out of the coupled resonators) is
easily measured, it is a useful conceptual alternative to coupling
concepts.

Index Terms—Coupling, filters, group delay, resonators.

I. INTRODUCTION

T HE DESIGN of microwave filters is based on
well-established techniques with perhaps the

lowpass–bandpass–inverter coupled-resonator process being
the most common design method [1]. For small-to-moderate
bandwidth filters, the concept of coupled resonators to realize
a particular response has a sound mathematical and practical
basis. Once the resonant cavities have been selected, only
the coupling values need to be set to generate the filter
response. By employing cross couplings between nonadjacent
resonators, linear phase and generalized Chebyshev responses
can be obtained. Thus, synchronously tuned resonator cavities
which are coupled appropriately can realize most of the
filter characteristics required even for very demanding
specifications.

The calculation of coupling values can be obtained from the
literature for a considerable range of microwave resonators,
and numerical techniques using commercial software are now
available which can be applied to three-dimensional structures.
Even so, due to the large variety of resonators and coupling
configurations, as well as the approximations often applied
to simplify analysis, it is still often necessary to empirically
determine coupling values. There are several methods for
determining coupling values, but the reflection technique is
particularly useful forin situfilter measurements. Furthermore,
with the measuring capability of vector network analyzers,
filter tuning can now be done in a precise convergent way. The
alternating short-circuit technique of Dishal [2] is modified
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here to include directly setting the coupling values as well
as the resonant frequency and “real time” adjustment for
the effects of frequency pulling of the resonant frequency.
Setting the coupling values arises from the simple relationship
between the coupling and group delay of the reflected signal.
The relevant equations are derived in this paper and confirmed
by measured results on filters and by comparison with other
techniques.

II. THEORY

The standard approach to filter design using low-pass
bandpass inverter coupled resonators is shown in Fig. 1.
The nomenclature used follows convention. The coupling be-
tween the connecting lines and the input and output resonators,
referred to as the external or , and the coupling between
resonators are readily specified in terms of the prototype

values and the relative bandwidth. Once these coupling
values are set and the resonators all tuned to the center
frequency, the inverter coupled filter will have the frequency
response predicted by the transformed low-pass prototype
within the accuracy limits of the frequency transformation and
the representation of the physical circuit by lumped elements.

and can be determined from the reflected signal
as successive resonators are tuned to resonance. These

parameters are related by quite simple equations to the phase-
and group-delay response of . The group delay of is
defined as

(1)

where phase of (rad) and angular frequency
For the bandpass circuit of Fig. 1, the group delay of

can be calculated directly from the equivalent circuit or from
the low-pass prototype. The calculation from the low-pass
prototype enables the group delay to be expressed directly
in terms of the normalized values and the bandwidth of the
bandpass filter. In this case,

(2)

where phase of (rad) for the low-pass prototype and
angular frequency of low-pass prototype.

For the standard low-pass to bandpass transformation

(3)
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(a)

(b)

(c)

Fig. 1. Circuit elements for (a) low-pass, (b) bandpass, and (c) inverter coupled-filter structures.

where center frequency of bandpass filter, lower
frequency edge of bandpass filter, and upper frequency
edge of bandpass filter. can be defined somewhat
differently depending on the type of filter response. For most
microwave filters, the Chebyshev response definitions are
generally applicable. In this case, and
(the low-pass cutoff frequency). and are defined as the
lower and upper extremities of the in-band equiripple response.

The group delay of for the bandpass circuit and for the
inverter coupled circuit is then given by

(4)

Now

and, for the lossless case where is purely imaginary and
is real, then

Therefore,

(5)

(6)

Consider the first single element of Fig. 1, which in this case
is the shunt capacitor of the normalized low-pass prototype,
shown in (7), at the bottom of the page. (The remaining
elements are disconnected from.) At the center frequency,

(8)

(7)
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(a) (b) (c)

Fig. 2. Group-delay values at!0 in terms of (a) low-pass prototype, (b) bandpass, and (c) inverter coupled-filter elements.

Exactly the same result can be obtained by considering the
input impedance of the single bandpass resonator (with all
other resonators disconnected). Alternatively, the impedance
and frequency scaled values for the input resonator can be
inserted in (7) to give

(9)

and, in terms of the inverter coupled circuit,

(10)

Now, consider two elements with the second element
shorted to ground. In terms of the low-pass, bandpass, and in-
verter coupled circuit, the group delay of can be calculated
at the center frequency as

(11)

(12)

(13)

where is the coupling coefficient between resonators 1
and 2.

This process can be repeated as each element or resonant
circuit is added into the network. Note that if the dual circuit
is used (i.e., is a series inductor), the same equations apply
except that is replaced by and vice versa in the
bandpass structure. Note that for the bandpass filter, the group
delay determines the value of the odd-numbered capacitors and
the even-numbered inductors. The other values are determined
directly from the resonance condition .

A summary of the relevant equations is given in Fig. 2
for up to six resonators. The extension to higher numbers of
resonators is obvious.

Fig. 3 shows the frequency response ofaround the center
frequency and also illustrates the frequency values for the
0 and 180 phase crossings as each successive resonator is
tuned to resonance. The coupling values between resonators
can be calculated from the frequency values at the 0and 180
crossings of the phase of , as shown by MacDonald [3] and
Atia and Williams [4]. A reflection-phase tuning method based
on Dishal’s alternating short approach has been reported in
the literature [5], but this is rather slow and tedious to apply.
A computer-controlled measurement of coupling parameters
using the frequency-crossing method which allows interactive
measurement and tuning has also been developed [6].

It is interesting to note that at the group delay of
is determined only by the shunt elements for an odd number
of resonators and by the series elements for an even number
of resonators. The reverse would apply if the dual circuit had
been used. Making a filter to generate a particular response is,
in principle, simply done by setting the group delay at to
the values determined from the low-pass prototype equation
of Fig. 2 and maintaining a symmetrical response as each
resonator is successively coupled into the circuit.

The equations given in Fig. 3 can also be used to measure
the coupling values in the filter structure. In general, the zero-
crossing technique should give the more accurate measurement
since it is the frequency only being measured. The capability
of vector analyzers to measure the group delay ofand the
precision of the measurement enable filters to be measured and
tuned precisely and noniteratively to realize any filter functions
which can be derived from the low-pass prototypes shown.

The alternating short tuning technique of Dishal has been
a standard tuning technique, but it provides no information



346 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 4, APRIL 1998

Fig. 3. Coupling values in terms of group-delay and frequency-crossing parameters.

TABLE I
NORMALIZED GROUP-DELAY VALUES FOR 0.01-dB RIPPLE CHEBYCHEV FILTERS

about the coupling values and does not allow for the detuning
of the previous resonator as the next resonator is tuned to
resonance. Consequently, iterative tuning is typically required,
and where the inter-resonator couplings have to be adjusted
to realize a very precise response or compensate for design
or manufacturing tolerances, the number of iterations can
be quite high. By setting the group-delay values at and
keeping the group-delay response symmetrical aboutas
each resonator is successively tuned, both of these drawbacks
are removed.

Table I tabulates normalized group-delay values for a
0.01-dB Chebyshev filter from three to eight sections. To
realize a 0.01-dB ripple Chebyshev filter of bandwidth (in
megahertz), the normalized group-delay values are divided by

(in megahertz). As each resonator is tuned to the center
frequency and the group delay of successively set to the

calculated values, the filter will then generate the required
Chebyshev response. Note that the group-delay values are
independent of the center frequency.

III. M EASUREMENT

To illustrate the application of the above equations, a typical
filter design will be considered. The procedure is applicable to
any general filter structure provided that the actual resonators
and coupling networks are accurately modeled byLC networks
over the frequency range of interest.

A conventional Chebyshev filter was required with the
following characteristics:

center frequency 2.3 GHz;
ripple 0.01 dB;
equiripple bandwidth 26.9 MHz;
number of resonators 6.
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TABLE II
DESIGN VALUES FOR STANDARD CHEBYSHEV FILTER

TABLE III
PREDICTED AND MEASURED RESULTS FOR FILTER

In the presence of loss, the equiripple bandwidth is not clearly defined. The bandwidth was
determined from the group-delay response rather than the amplitude response of.

Using the normalized values or the normalized group-
delay values of Table I, the required group-delay values can
be calculated. These are listed below in Table II along with
the coupling values.

The actual filter is symmetrical (although the low-pass
prototype is not, since it is even degree) so that the group-
delay values are the same when measured from either end.
For the low-pass prototype, the group-delay values from the
output end will be identical to the input-end values if is
replaced with .

The filter was realized in combline form using round rods
with the input and output connections made by tapping onto
the first and last resonators at an appropriate height along each
rod. Tuning screws were placed between each resonator and
on the input and output couplings as well as on each resonator
so that all couplings and resonant frequencies could be set
precisely.

Using the calibrated network analyzer, the group delay of
for the input and output resonators was set to 18.5 ns

at 2.3 GHz. Resonator 6 was then shorted and the tuning
process started at resonator 1. The basic steps are as fol-
lows.

1) Short all resonators except resonator 1. (Precise results
are obtained only if the resonators are properly shorted
rather than simply detuned.)

2) Adjust resonator 1 and the input coupling to set the
specified group delay (18.5 ns).

3) Tune the second resonator and the coupling between
resonators to get a symmetrical group-delay response

about the center frequency (2.3 GHz) and with the
specified value (32.2 ns). To maintain symmetry, it may
be necessary to readjust resonator 1 if the coupling is
sufficiently strong to “detune” the resonator.

4) Progress through the filter, tuning each resonator in turn
and maintain symmetry of the group-delay response by
trimming the prior resonator if necessary.

5) When the last resonator is reached (and the filter output
is properly terminated), observe the amplitude response
of and tune the last resonator and the final inter-
resonator coupling screw to get the specified return loss.

In principle, the final resonator tuning can be done with
a short circuit (for even number of resonators) or an open
circuit (for an odd number of resonators) on the output to set
the specified group delay. However, the short- or open-circuit
plane position is somewhat indeterminate and the matched
output gives a much more sensitive response.

The above steps were carried out for the six-section
combline filter. Apart from the tuning to maintain group-
delay symmetry as each resonator was tuned, no iterative
tuning was done and the response obtained after the sequential
tuning matched the predicted response very well. Only one of
the six return-loss nulls was not sharply defined (indicating a
slight mistuning of a resonator), although the finite loss of the
filter completely masks the passband ripple. The comparative
results are shown in Table III.

The group-delay peaks of were predicted to occur at a
spacing of 30.5 MHz and the measured spacing was also 30.5
MHz within the experimental error.
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TABLE IV
SYMMETRICAL CHEBYSHEV AND APPROXIMATE ELLIPTIC PROTOTYPE VALUES AND MEASURED COUPLING VALUES

TABLE V
MEASURED GROUP-DELAY VALUES FOR VARIOUS RESONATOR COMBINATIONS

The coupling values were values measured using the
frequency-crossing method as each resonator was tuned. These
measured values of coupling are listed in Table II. The very
close agreement verifies the sensitivity and accuracy of the
group-delay method for setting coupling values.

The method can also be applied (with due care) to the
multicoupled-resonator filters that are commonly used for
elliptic- and linear-phase filters. An elliptic filter with
a single cross coupling was designed using the perturbation
method of Levy [7]. The initial prototype was a 0.01-dB ripple
Chebyshev filter with a nominal bandwidth of 21 MHz and
center frequency of 880 MHz. The transmission nulls were
nominally placed at 16 MHz from the center frequency by
appropriate cross coupling between resonators 3 and 6. Fol-
lowing Levy, the symmetrical Chebyshev low-pass prototype
values, the modified values for the elliptic response, and the
coupling values are shown in Table IV.

The filter was constructed using coaxial resonators with loop
coupling and capacitive probe coupling for the elliptic cross
coupling. Unlike the previous example, all the coupling values
were fixed with only the resonant frequency of the resonators
being able to be adjusted. The objective here is to compare
the measuring techniques rather than to specifically compare
theory with measurement.

The coupling values were measured using the frequency-
crossing method and the group-delay technique. Since each
theory is only applicable for in-line coupling, the coupling
values can be calculated only when this situation applies.
To calculate , for example, resonators 4 and 5 must be
completely shorted and the resonators tuned are 1, 2, 3, and
6. For improved accuracy, coupling measurements are made
from both ends of the filter. Thus, calculated with the
signal applied to resonator 8 will be more accurate than if
measured through resonators 1–6.

The measured data for the group-delay technique is shown
in Table V.

Where a value was measured from different ends (e.g.,,
) the average result is shown in Table IV. To measure

using the delay method, the frequency span of the network
analyzer was reduced from 50 to 5 MHz to enable the very
sharp peak to be accurately measured. It is interesting to
note that when resonator 7 was tuned after 1–3, and 6, the
very high group delay of 1190 ns measured for resonators
1–3, and 6 reduced to 80.4 ns. This value gave a result of

, but the correct result of 0.0148 would have
been obtained if the measured group delay had been 80 ns. The
method is very sensitive in this case since two nearly equal
values (77.9 and 80.4 ns) are being subtracted to calculate
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the coupling. This simply verifies the expected result that
the accuracy of subsequent coupling values would be low
when measured through a coupling value that is considerably
smaller. This is not an issue in most filters, as it is only the
cross couplings that differ appreciably from the other couplings
and there is no necessity to measure other couplings via cross
coupling. Table III shows that the coupling values measured
by the group-delay technique agree very closely with those
determined by the frequency-crossing method, the errors being
less than 1%.

IV. EFFECT OF FINITE

The above procedure is strictly correct only for lossless (i.e.,
infinite) resonators. Finite can be incorporated by using
the following complex low-pass-to-bandpass transformation:

(14)

Note that is the same as for the lossless transfor-
mation.

For a single resonator, from (14) is substituted into (7)
to give

(15)

In terms of the bandpass equivalent circuit, the following
values are readily derived:

(16)

for a single-shunt resonator and

(17)

for a single-series resonator where for a shunt
resonator and

for a series resonator.
Equation (15) can be rearranged to give

(18)

and

(19)

Therefore, can be determined from the magnitude
of at the resonant frequency, thus allowing to be

TABLE VI

determined from the group delay. For a single resonator, the
effect of loss is to increase the measured group delay compared
to the case when the resonatoris infinite.

The reflection coefficient group delay for two coupled lossy
resonators is then

(20)

where

so

(21)

where

For an odd number of resonators, the finite increases
the measured group delay, whereas for an even number it
decreases the group delay compared to the lossless case. If
the coupling value is defined by

(22)

then, in general, will increase if is odd and decrease if
is even as the of the resonators decreases. The effect of

loss on the reflection group delay is to increase the maximum
and reduce the minimum values of the group-delay response.
This is illustrated in Fig. 4, which shows the group-delay
response for two resonators. The curves were derived using
a commercial circuit-analysis program and modeling the first
two resonators of the combline filter described in Example
1 by – elements. The bandwidth in this case was set
at 23 MHz, which for a value of of 0.175 gives a
resonator of 450. The empirically derived group-delay
values at and the calculated ones are shown in Table VI
for , and .

If a 23-MHz bandwidth filter with six resonators and a
resonator of 450 was realized at 2.3 GHz, the insertion loss
would be over 7 dB. If the was only 165, the insertion loss
would be nearly 20 dB. This generally confirms the validity
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Fig. 4. Group-delay response for two resonators with infiniteQu and finiteQu.

of the assumption that loss can be neglected in calculating
for most practical filters where insertion losses of less than
3 dB are typical.

The effect of finite will be small enough to be neglected
provided or . This condition is
usually readily met by most practical filter structures, except
perhaps by cross-coupled filters using very low cross-coupling
values.

V. BANDWIDTH LIMITATIONS

The coupled-resonator technique requires that coupling re-
actances are frequency invariant, the resonators can be repre-
sented asLC circuits, and that parasitic characteristics such as
coupling between nonadjacent resonators is negligible. These
conditions all become less valid as the bandwidth of the filter
is increased. The discrepancy between the actual response and
that obtained from setting group-delay values will depend
on the physical configuration of the filter as well as the
relative bandwidth. The theory was tested for a 20% bandwidth
interdigital filter at 3.9 GHz. The actual bandwidth of the filter
determined from the response after setting the group-
delay values was very close (within 2%) to the theoretical
value. However, the return loss was only about 22 dB (instead
of 26 dB) after the initial tuning and some further iterative
tuning was necessary. This may be partly due to nonadjacent
resonator coupling although progressive measurements of the
coupling coefficients showed that the values changed by less
than 0.5% indicating nonadjacent coupling is negligible. With
wider bandwidth filters, the group delay of becomes quite
small and allowance may have to be made for propagation
delays if the filter is physically large. The equivalent circuit
model is a lumped element one and does not account for the
time for the energy to travel across the resonator. If the filter
bandwidth is wide enough to cause significant errors in the
design, then this can usually be resolved by tuning a prototype

filter for the optimum response, measuring the group-delay
values and setting these in subsequent filters.

VI. CONCLUSION

The theory of filter design using low-pass prototypes and
low-pass-to-bandpass transformations has been extended to in-
clude the group delay of the input reflected signal. The simple
equations relating the group delay at the center frequency to
the low-pass prototype values and to the coupling coefficients
for inverter coupled filters have been derived. This information
can be used to measure coupling coefficients and to precisely
tune filters to achieve a specific response without iterative
tuning.

With the measurement capability of vector network ana-
lyzers, the results of the method both in measuring coupling
coefficients and in tuning filters have been shown to be quite
good. The effects of loss have also been included and have
been shown to be negligible for most practical filters. While
the analysis has been derived only for “in-line” filters, the
technique can be applied to cross-coupled filters with due care.
The method is also very useful for setting the component
values of LC filters, but particular attention must be given
to circuit parasitics as these may change the format of the
equivalent circuit. The effect of finite has been discussed.
This may be required for narrow bandwidth filters using
relatively low resonators or when very small cross couplings
are used for linear-phase or elliptic-response filters. Finally,
it can be noted that the group delay of the reflected signal
contains the same information as the coupling coefficient.
Since the group delay can be directly measured, it may be
more appropriate to consider filter design in terms of time
rather than coupling coefficients.
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